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1. Let k£ be an algebraically closed field, and let 4 and g be two integers with
g=2andd > 1000g(g — 1). Letn =d + 2 — 2g, and let W be a vector space
of dimension n. G will denote the grassmannian of all codimension-two
subspaces of W, and & will denote the universal rank-two bundle on G. In this
paper, a curve will be a connected one-dimensional projective scheme. Let C be
a curve on G, l.e., C is a subscheme of G which is a curve, and consider
E = b= &. Let Po(m) = x((det E )®™) be the Hilbert polynomial of C
where det £ = /\’E. We let S, , be the set of all curves C on G with
Pe(m)=dm + 2 — 2g Thus S, ,is the set of all curves of genus g and degree
don G.

Now W is identified with H%(G, &), so given C € S,.4» there is a natural
map

¢ :W-HC,E).
We will identify W with H%(C, E) if ¢, is an isomorphism. Thus we obtain a
map
@y NW - HO(C, NE).
So for any positive integer m, we obtain a map
9;: S™(AN?W) - H(C,(det E)®™).

We may and do choose m so that g, is onto, so that h%(C, (det E)®*™) = P.(m)
for any C € S, ;. Thus we finally obtain a map

Pe(m) Pe(m) o
or: N S™(A*W)-> AN H(C,(det E)®") =k.

We say C C G is m-Hilbert stable (resp., m-Hilbert semistable) if ¢/ is
properly stable (resp., semistable) under the induced action of SL(W') in the
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terminology of Mumford, i.e., ¢ has closed orbit and finite stabilizer (resp., 0
is not in the closure of the orbit of ¢f). We say C is Hilbert stable if it is
m-Hilbert stable for m > 0. We say a pair (C, E) consisting of a curve C and
vector bundle E of rank two is m-Hilbert stable if (C, E) occurs as an
m-Hilbert stable curve in S, ;.

Now if E is a rank-two bundle on a smooth curve C, and L is a subbundle of
E of maximal degree, we define /; = deg E — 2deg L. Recall that E is stable if
Iz > 0 and semistable if /; = 0.

A curve C is nodal if C is reduced and has only nodes as singularities. Let w,
denote the dualizing sheaf of such a curve. Recall C is stable (resp., semistable)
if w. has positive degree (resp., nonnegative degree) on each component of C
[5]. For each semistable curve, the sections of wE’® define a map to P*¢~>, and
the image of C is a stable curve denoted C,. C, is obtained from C by
collapsing all components on which w is trivial. These components are smooth
rational curves meeting the rest of C in exactly two points. A semistable
subcurve C’ of C is a subcurve which is the inverse image of a node of C..

We fix g for the rest of the paper.

Theorem 1.1. There is a D so that for each d = D, there is an M depending
on d so that if m = M, and C is a smooth curve in S, ;with W = HYC, E), then
C is m-Hilbert stable (resp., semistable) if and only if &, is stable (resp.,
semistable).

Theorem 1.2. For g and d given, there is an M so that if m =2 M and
C €S, ; is m-Hilbert semistable, then C is semistable as a curve and W =
H%C, &)

The proof of Theorem 1.1 is given in §§2-5 and that of Theorem 1.2 in
§§6-9.

Now in §10 we will suppose C € S, , is m-Hilbert stable for m sufficiently
large, and study E = &,. First we will show that if Q is a quotient line bundle
of E, then k

(1.3.1) deg E < 2deg Q.

Now let C’ be a semistable subcurve of C. FE is said to be acceptable on C’ if
either
(1.3.2.1) C’ has one component and so is isomorphic to P!, and E_ is
0@ 0(1) or O(1) ® 0(1) or
(1.3.2.2) C’ has two components C, and C,, and E is isomorphic to
O @ 6(1). Further, E_. has no quotient 1somorphlc to O..

We will show
(1.3.3) E is acceptable on each semistable subcurve of C.
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Finally, let d be odd and suppose C, is an irreducible curve with a node. Let
C be the normalization of C,. Then € maps to C as a component of C if
C # C,. Thus we may consider E, the pullback of E to C. Then we will show

(1.3.4) If C= C,and dis odd, then ;> -1. If C # C, then E is semistable.

We wish to thank Ed Griffin for pointing out an error in an earlier version
of this paper.

2. Let C be a curve in §, ,. We wish to apply the Hilbert-Mumford
numerical criterion to . First, a weighted basis (X, 7,) of W is an ordered
basis of W together with rational numbers 7, with r, 2 r, = --- = r,. If the r,
are integers, and their sum is zero, we call B standard. A standard weighted
basis determines a one-parameter subgroup of SL(W) via

Xl?\(a) =a"X,.

Every 1 — PS occurs in this way. A weighted basis B of W gives rise to
weighted bases on the representations of SL(W) discussed above, as shown in
the table.

REPRESENTATION BASIS ELEMENT WEIGHT
AW Y, =X, AX, n=r tr,
smNW My=Y, - Y, rg:§r,k
poy
N Pmgm N\ 2w My Ao AMg, >
k=1

If B is standard, so is each of these bases, and each diagonalizes the action of
Az on the corresponding representation. The coordinate corresponding to
My A -+ ANMp,, does not vanish at ¢f if and only if the images under ¢ of
M,,- -, Mp(,, in HY(C, A2E®™) form a basis there. We will call such a basis
a‘B-base of H(C, A\*E®™), and denote by wy(m) or wy(m, C) the minimum
weight of such a basis. Each B determines a weighted filtration F, = {(V}, r;)}
on Wby V, = span{X,,- - -, X, }. A useful observation is

Lemma 2.1. If Fy = Fy, then wg(m) = wg{m).

Recall the Hilbert-Mumford numerical criterion: a point x of a representa-
tion ¥ of a reductive algebraic group G has stable orbit if and only if, given
any nontrivial 1 — PS§ X of G and coordinates which diagonalize the action of
A on V, there is a coordinate not vanishing at x whose A-weight is negative. The
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discussion above therefore gives
Theorem 2.2. (C, E) is m-Hilbert stable (resp., semistable) if and only if for
any nontrivial standard weighted basis B of W, wg(m) < 0 (resp., wg(m) < 0).
Corollary 23. (C, E) is m-Hilbert stable (resp., semistable) if for any
nontrivial weighted basis B of W

2mh®(C,(NE)")
h°(C, E) ;
Proof. Since both sides of the inequality are linear in the r; jointly, it
suffices to prove this when the 7, are integers. We then associate to B the
standard weighted basis B’ = {( X}, 5;)}, where s; = nr; — Z7_, r;. The B’-weight
of a monomial of degree m in the exterior products X; /A X; equals n times its
B-weight minus 2mZ"_, r,. Since any B-basis contains h°(C,(/ ZE)®™) ele-
ments,

wy(m) < (resp., <) .
=1

wy(m) = hO(C, EYwy(m) — 2mh®(C,(NE)°") 3 r..
i=1
The corollary now follows immediately from Theorem 2.2.

We will say C is m-stable with respect to a weighted basis B if the inequality
of Corollary 2.3 holds for wg(m). From the linearity of this inequality in the
{r,} jointly, we see that we are free to translate and rescale the weights so that
n=rn=---2r,=0and T, r,= 1. We say a weighted basis B satisfying
these conditions is normalized. Note also that if the 7, are integers, then each
side of the inequality in Corollary 2.3 is represented for large m by a
polynomial of degree two in m whose leading term is of the form 3em? with e
an integer (cf. [6]). We call e the normalized leading coefficient, written n.l.c.,
of this polynomial, and define e when the 7, are rational using the linearity of e
in the 7, jointly.

Corollary 2.4. Fix g, d and a real number ¢ > 0. Then we can choose an
integer M (depending only on g, d and €) so that the statement below is verified:

If B is a normalized weighted basis of W and

n.l.c.wg(m,C) < 3 — er,

C €S, then for all m = M, C is m-stable with respect 10 B.

Proof. This can be established by techniques similar to the proof of
Proposition 1.2 of [1].

Now if L is a subbundle of E with degree sdeg E and W = H°(C, E), we
can consider the normalized basis which assigns weight 0 to every element of
H°(C, L) and equal weight to every element of W/H°(L). such a weighted
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basis will be said to be special for C. In this situation, we have

Proposition 2.5. (i) There is a D so that for each d = D, there is an ¢ > 0 so
that if C € S, , is smooth with W = H%(C, E) and B is a normalized weighted
basis of W which is not special for C, then

e wy(m, C) < ¥ = e(r = 1,).
(ii) There is an M so that if m = M and B is a normalized special basis of
W = H%C, E), then
2mh°(C, (/\ ZE)®m)
h(C, E)

wy(m) =

Actually in (i) we will fix C € S, , and B, and show

4d

Il.l.C. WB(m) << d—+—l-_—g s

and leave the question of the uniformity of ¢ with respect to C, E and B to the
reader.

This is the key step to Theorem 1.1. The proof occupies the next three
sections:

3. For §§3, 4 and 5 we fix a smooth curve C of genus g and a vector bundle
E on C. Let I = d — 2d, where L is a linesubbundle of E of maximal degree.
If E is decomposable, / < 0 but can be arbitrarily negative. However

Proposition 3.1 (Nagata [7)). If E is indecomposable,2 — 2g < Iy < g.

If L is a sublinebundle of E, we let M, = E/L and write M for M, if the
context determines L. We say L is nice if both L and M both have degree at
least2g + 1.

Lemma 3.2. If L is a nice subbundle of an indecomposable E, and U is any
complement to H(C, L) in H°(C, E), then the following hold:

(i) The projection from E to M maps U isomorphically onto H%(C, M).
(i) E is generated by H°(C, L) and U.

(iil) The map ¢, »: H(C, L) ® HY(C, M) - H(C, L ® M) is surjective.

(iv) The map &, takes H*(C, L) N U onto H°(C, /\ *E).

Moreover if deg E = max(5g + 1, 4g + 2 — I), and E indecomposable, then
E has a nice linesubbundle.

Proof. For the last statement, note that since i(deg E — g) = 2g + 1 and
Iz < g, E must have a sublinebundle L of degree at least 2g + 1. The quotient
M, has degree deg E — deg L = 3(deg E + [z) = 2g + 1.

The long exact sequence associated to the composition series 0 - L —» E —
M - 0is0- HC,L)— H%C, E) - H%C, M) - 0 by the hypothesis on
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L and M, which gives (i). If P € C, let S be a section of L not vanishing at P,
and let T be a section in U whose image in H°(C, M) is nonzero at P. Then S
and T generate E at P, which gives (ii). Since L and M have degree at least
2g + 1, the surjectivity of ¢, ,, follows from [5, Theorem 6, p. 52]. Now
observe that L ® M = A ’E and thatif S € H%(C, L), T € H%C, M) and T
is the section in U lying over T, then ¢,(S A T)= &, (S ® T'); this yields
(iv).

Now for §§3, 4 and 5, we suppose E is semistable and W = H°(C, E). We
next recall a Proposition (3.2) which follows from results of [4] concerning
stability of line bundles on C.-While we will use some results on multiplicities
to obtain Proposition 3.2, they do not appear in its statement and will not be
used elsewhere. For definitions and a discussion of these multiplicities see [4].
Let S = {(S,, 0,)} be a weighted basis of H°(C, L) where L is a very ample
line bundle on C. Then for large m, S"H(C, L) maps onto H%(C, L®*™), and
we define wy(m) to be the least weight of a basis of H°(C, L®™) consisting of
monomials in the S,. We let L be.the pullback of L to C X Al. If the o; are
nonnegative integers decreasing to zero, we define an ideal sheaf 5 on C X Al
by I'(% - L) = (5,2, where ¢ is a parameter on A!, and let e;(J) be the
multiplicity of this ideal sheaf with respect to L. Then n.Lc. wg(m) = e ) by
Corollary 3.3 of [4]. If § = {(S}, 0,)} and T = {(T}, 7,)} are weighted bases of
H°(C, L) and H°(C, M) respectively with L and M both of degree at least
2g + 1, then we define Ws,r(m) to be the least weight of a basis of
H(C,(L ® M)®™) consisting of monomials in the tensors S;® T, (with
weight o; + 7). Such a basis exists by (iii) of Lemma 3.2. If § and T both have
integer weights decreasing to zero, then Proposition 3.9 of [4] and Lemma 3.10
give respectively

nle. (wsrim)) =ei(%) + 2e([L, &1, [M, 4]) + e (%),
e([L, gs]’ [M, gT]) < $(ei(%) + e ()

Hence we obtain

Proposition 3.3. Suppose S = {(S,,0,)} and T = {(T;,7,)} are weighted
bases of H°(C, L) and H(C, M) respectively such that the weights o, and 7, both
decrease to zero and such that L and M both have degree at least 2g + 1. Then
nd.c. (Ws,r(m)) < 2n.lc (wg(m) + wp(m)).

Note that by the homogeneity of this inequality we can allow the o, and 7; to
be rational. We will combine Proposition 3.3 and Lemma 3.2 to obtain an
upper bound for wg(m) for each nice linesubbundle L of E. Fix a normalized
weighted basis B = {(X;, s,)} of H%C, E) and a nice subbundle L of E.
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Recall that the associated long exact sequence is
0-H%C,L)-HYC,E)- HC, M) 0.
Choose a basis Y = {Y,,---,Y,} of H(C, E) so that

(1) span{Y,---,Y,} =V, =span{X,,---,X,},

34 .
(3.4) (i) Y=SUT whereSisabasisof H(C, L).

Let B'= {(Y, r)}. By Lemma 2.1, wg(m) = wg{m) so that in estimating
wg(m) we may assume that B satisfies condition (3.4)(ii). We do so henceforth
without comment and say the basis B is adapted to L. By Lemma 3.2(i) the
image T of T in HOY%C, M) forms a basis there. Let S = {8, -,S,,L},
T= {Tl,---,TNM} and T= {Ty,---,T, } ordered in each case so that the
weights of the corresponding elements of B decrease.

Consider the diagram

HO(C, L) ® HY(C, M) —“" HY(C, L ® M)
vl I
Pk
NH(C, E) ———————— H(C, \E)

where ¢ is defined by (S, ® T;) = §; \ TJ The diagram commutes, and the
rows are surjective by (iii) and (iv) of Lemma 3.2. Define weights {s,} on S and
{1,} on T and T so that the weight of each basis element equals the weight of
the corresponding element of B. Then defining the weight of R;; = S, ® T to
be s, + ¢; makes ¢ weight preserving. We obtain a commutative diagram

S™(H°(C, L) ® H°(C, M))——H(C,(L ® M)®")
ST I
S'"/\ZHO(C,E) HO(C,(/\ZE)®m)

with surjective rows and with $™y weight preserving. Thus wg(m) is at most
the minimum weight of a basis of H(C,(L ® M)™) consisting of monomials
of degree m in the R, . Let w, =5, and wy, =1, , and define new weights g;
and 7, by 0, = s, — wy and 7, = 1, — w,,. Observe that one of w; and w,, equals
r, which is zero since B is normalized, and that both the ¢,’s and the 7,’s
decrease to zero by the choice of the orderings on .S and T. Let S = {(S;, 0,)}
and T = {(T}, 7;)} denote these weighted bases. As the (o, 7)-weight of any of
the R;; differs from its (s, 7) weight by w; + wy, the (0, 7)-weight of a basis of
H%C,(L ® M)™) consisting of monomials on the R, ; differs from its (s, 1)
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weight by mh®(C, (L ® M)™)(w, + w,,). Hence
we(m) < mh®(C, (L ® M)*")(w, + wy) + ws.py(m).

Applying Proposition 3.3 and taking leading coefficients gives
Theorem 3.5. If L is a nice subbundle of E, and B is a normalized weighted
basis of HY(C, E) adapted to L, then

n.d.c.wg(m) <2d(w, + wy) + 2n.l.c.wg(m) + n.l.c.wy(m)).

In the situation of the theorem; especially in §5, we will continue to use the
notation developed in the preceding discussion (e.g., S, o;, w;) to denote the
quantities defined there.

4. Tix a weighted basis B = {(X,, r;)} with associated weighted filtration
Fp={(V,,r;)}. We will give an estimate for n.l.c. wg(m) in terms of the
subbundles of E generated by the sections in V. This criterion is an analogue
for the rank-two case of estimates given for invertible sheaves in [2] and [6].

Let E; be the subsheaf of E generated by the sections in V¥, d, = deg E,,
e; =d — d,, and let s = s, be the greatest index such that rank E; = 2. If / and
J are less than or equal to s, and 0 <k <m, let W, ,,  be the image in
HO(C, (/\ 2E)®(m+l)N) of

S S K A) v SH(AV) V AHO(C, E)).
Ifi <s,let W, , , v be the image of

S¥(SmHA) V SKV, A Y,) V ATHY(C, E)).

Lemma 4.1. There is an N, depending only on the genus g of C such that if
N = N, and m > 0, then:

() fori,j<s, dimW, ,, v= N(m — k)d; + kd;),

W) fori <s,dimW,,, y= N(m — k)d,.

Proof. We give the proof of (i), that for (ii) being similar. Since E; is
generated by the sections in V;, /\ *E, is generated by the sections in /\ >,
Hence the elements of Wj x generate L, ;= = (N\’E)"*® (N\’E )" ®
/\2E. Since /\“E is very ample on C, and /\ 2H %, E) maps onto a very
ample sublinear system of /N ZE, W, ; ., forms a very ample sublinear system
of L; ; , without base points. Thus for N large, the elements of W, ; , v generate

O(C L? " ~ ) which by Riemann-Roch has dimension N((m ~ k)d, + kd; +

d) — g+ 1 from which the desired inequality is immediate. We omit the check
that N can be chosen independent of C and E, which follows by arguments like
those of Lemma 2.1 of [2].

Suppose a vector space V' with a weighted filtration contains subspaces U
satisfying:

OV=UdU_, D DU,
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(i) codim U; = ¢,

(iti) the weight of every element of U, is at most w,

Vyw=zw_,= 2w, :
Then ¥ has a basis of weight at most Zﬁ;{(wﬁl — w,)¢; + w, dim V. Now pick
a sequence of integers 1 =i, <i, < ..-<i,_, <j,=n, where i,_, <s, and
apply this remark to the filtration of H(C,(/\’E )®("‘+‘)N ) by W, on2
Wiisaw 2 2 Wiiomy = Wonon 2 Woan 2 - 2 Wi m - The
weight of any sectlon in W, ;, » is bounded by 2N((m — k), + kry + rp) if
Jj<s,and by NQ(m — k)r, + k(r, + r,) + 2ry) if j = n. From Lemma 4.1, for
J =< s wehave

codimW, ;, v < (N(m+ 1)d — g+ 1) — N((m — k)d, + kd,)
N(d+ (m-k)e, + ke;),
codimW, , , x <(N(m+ 1)d — g+ 1) — N(m — k)d,)
< N((m—k)e, + (k+ 1)d).
Hence we obtain
-2 m

wo((m+ DN)< 3 3 28(r, — 1, ) N((m = K)e; + ke, +d))

j=1k=0
+ éON(r,.,_l —r)(N((m — k)e,_ + (k+ 1)d))
+N(m(r,_ +r,)+2r)((m+ 1)Nd—g+1)

(mN) 22 (r 1, (e +e,+])

+(n,_ — rn)(e,.H + d).+ 2(r,  + r,)dl + 0(1),

I

where in the O(1) term we have collected all terms of order 1 in m. If we take B
to be normalized so that r, = 0, then by applying this to all subsequences of
(1,- - -,n) simultaneously and taking leading coefficients we obtain

Theorem 4.2.  If B is a normalized weighted basis of H%(C, E), then

d.c. < .2 — 4+ oe.
n.l.c.wg(m) (l:i|<m121, . jEO(r ",+,)(exj elﬁ,)

+r,_ (e, +3d).

=
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5. In this section we fix a smooth curve C and a rank-two bundle E of degree
d on C. Our aim is to establish Proposition 2.5 and thereby to prove

Theorem 5.1. There is an M depending only on g so that if d = M and E is
stable (resp. semistable), then (C, E) is Hilbert stable (resp. semistable).

Proof. We assume E is semistable. Let « = g — 1, and let kK = 10%?%. We
say a line bundle is good if deg L = k. We divide the proof into two cases. In
our first case, we assume
(5.1.1) tk E;=2 fori<n—k.

We first estimate 4'(E,) for i < n — k. E, has rank two and at least 2g + 2
sections. Let L, be the sublinebundle of E so that S, € H’(L), and let
L, = E/L,. Then both L, and L, have sections, and at least one has g + 1
sections. Hence A'(L))<a+ 1=g, and A(L,) or A'(L,) is zero. Since
h\(E;) < h'(L,) + h'(L,), we see

(5.1.2) W(E)<a+1 ifi<n—k,
Next we claim
(5.1.3) R(E)=0 ifi<in— 3a.

Indeed, if A'(E;) # 0, then E; ! ® Q' has a section, and so E, has a quotient of
degree at most 2g — 2. Thus E, and hence E would have a subbundle of degree
d; — 2a. Since E is semistable,

(5.1.4) d=2(d, - 2a).
But
(5.1.5) d; = h°(E)) +2a — W'(E)

2(n—i+1)+2a—a—1=2n—i+1.

Sincei < in — 3a, we have
d=%+3g—2,
and by (5.1.4),

d=2(4+g)=n+2g,

which contradicts the fact that d = n + 2a. Thus (5.1.3) is established.
We see from (5.1.5) that

e,=d—d;=d— (h°(E) + 2a — h'(E)) <i—1+h(E,),

sincen + 2a =dand h%(E)=n—i+ 1.



HILBERT STABILITY 11

Define ¢; and f, by

L 2a(j—1) ifi<%— 3a,
i 2(i—1)—2(a+1) ift—3a<i<n-—k,

(5.1.6) =43 —1—¢).
We have
(5.1.7) (fi—-1—-23G-1))=i—1,
SO
(5.1.8) f2(i—1)+h(E)=e
by (5.1.2) and (5.1.3).

Define

-
Py(1) :2(1=i1 rmgll -y 2 (r — ,H)(e +e,+l)

P(I)=2 _  min 2( o St 1)

(A=in<--- <i_ |—I
Then P(1) = Pg(I). Further define
f2
2t (i Df — S f

o(1) =
By Corollary 4.3 of [4],
I
P(1)<20(1) 3, (r,~ 1y).

=
Thus

Pi(1)<20(1) 3 (5= 1)

Our next object is to estimate Q(7). To this end, we define §; by

2
8,.:%‘1— - J fori = 2.
h (l_ l)f;‘~2j<if;i
We wish to show 8,2 1/2n. If i <n/2 — 3a, then f, = (i — 1) and a direct
computation shows that §, = 1/(2n). Assume i > n/2 — 3a. First notice that
we have

f—i+l<a+1
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from (5.1.6) and (5.1.7). Hence

‘(i -Df-2f5-0G- 1) =40 — 1)(i—2)1<2(a+ 1)i.

j<i
So
(i— 1= 2f<3(—-1Di+2(a+1)i<3i(i+4a+3).

We compute

() (= 05-S5)8=2G = D~ 25) ~5(£)

=(i—-1)+22£j—£i,

als

We next claim that
(5.1.10) 2 e — el > -18d%,

Jj<i
for i > n/2 — 3a. Once (5.1.10) is established, we will have
— — 2 2 P 2 2
o (i—=1—18e%)d . 20— 18a>— 1)d 1
: ((z —Df,—3fn* (i +4a+3)n?  2n

Thus

1
(5.1.11) d, >7’;

Since (5.1.11) holds for i < n/2 — 3a, (5.1.11) holds in general.
We next establish our claim (5.1.10). Let J be the greatest integer in
n/2 — 3a. Then

diglej: zalgl(j— 1) = n(a+ 1)(i—J 1)
Za((i— 1)i—2)—2n(i —J~1)).

The function f(i) = (G — 1)(i —2) — 2n(i —J — 1) has its minimum when
2i — 3 = 2n. Thus since i < N — k and k > 10%?,
fiy=(n—k—1)(n—k—2)—2n(n—k—4%4+3a—1)
= —(6a+ 1)n= —Ta’n.
Also,forn/2 —3a<isn—k,-2<g<2a So

228—8 -18a%.
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Thus if (C, E) is not stable with respect to B, we would have for each 1

%?sgu%ékg—m

Jj=1

+ r,(e; + 3d).

From (5.1.11), we see

£ _2d _ 2d_ 1
(=Df=3f w5 a)
So
1
Q(I)<7_2n
Thus
d d—
(5.1.12) 47<(4 - 1)( Erj—rz) +r(fy +3d).

s3

Next let B(I) = 1 — ZI_, r. Since 2 r, = 1, we can write (5.1.12) as

r,(f,+3d—ﬂ1) 3(1)+ 2 (r—

nj<r
Now
d
fI:;((I_l)_EI)’ —e,\d(n+6g ) <2
So
f,+3d——1 (3( —1I)+1).

Thus
(5.1.13) rnBn—1)+1)=48(I) + = 2 (r,—

J<I
In particular,
(5.1.14) r(3(n—I) + 1) = 48(I).
Let J, = n — 10’k where & = 10%>.

We claim
1

(5115) (k+2)rjo<m-

Indeed, note for any J, :
B(n—10J)=9r,_,+ B(n—J).

13
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From (5.1.14),

=

. 4 B(n—10J) > oJ 12
L T TV 2o W BTV A e A VR

So r; = (12/11)’r,0. Choose { so that (12/11)' = 300(k + 2) and J,= 2n/3.
(Recall that we are assuming that 4 and » are large with respect to g and hence
to k.)

[2rz/3 n
E e —2-(300(k +2))r,.

Thus our claim (5.1.15) is established.
Next note that

I
2(n=r)=1-8)— I,
s0 (5.1.13) shows that
(3 =n 41+ 2) = ap(n + S0 - 8(1) =5,

Finally, we take I = J,. Then

3k+2 1

=

100n(k +2) ~ d’

which contradicts d = n + 2a. Thus we have established Theorem 5.1 under
assumption (5.1.1).

We may accordingly assumerk E,_, =1 and hencerk E;, = 1 fori = n — k.

Let L be the sublinebundle of E containing E, for i =2 n — k. We may
replace B by a basis adapted to L without affecting the hypothesis. If / is the
greatest integer so that S, € H%(L), then /= n/2 since otherwise L would
have more than n/2 sections, thus contradicting the semistability of E£. Thus
wy, = 2/n with strict inequality if E is stable.

Recall from Theorem 3.5 that n.l.c.wg(m) < 2(w,)d + 2nlc. (ws(m) +
wo(m)). Since L is good, d, and d,, are greater than K, and it follows from
Corollary 4.6 of [4] that n.l.c. Ws(m)< 237%,0; and nlc. wy(m) <23
Note that

ny %

I—Er—nMwM-i- 20-1—2

i=1 i=1 j=1
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If E is stable we obtain

np Rap
nl.c.wy(m) < 2w, d+ 4( So+ T,-)

i=1 i=1
_ 4d
= 2wy d + 4(1 — nywy,) <— 2wy (21, — n).
If E is semistable, then n,, = n/2, hence wy, < 2/n. Unless n,,w,, = 1, this
implies
4d

n.l.c.wg(m) <i’? — 2dwy,(2n,, — n) <

so that (C, E) is stable with respect to B. If n,w,, = 1, this argument only
shows that n.l.c. wg(m) < 4d/n which does not suffice to prove (C, E) semi-
stable with respect to B. However, in this case all the ¢,’s and 7,’s must be zero.
Hence every section R; = S; @ T, has weight w,,. But then

2mh®(C,(NE)")
h°(C, E)

wB(m)Sth(C,L(XDM)@m)wMS ,
since wy, < 1/n,, < 2/n. This completes the proof of Proposition 2.5.

Now Theorem 5.1 follows from Corollary 2.3. In fact, if E is unstable, L is
the destabilizing line subbundle, and B is any standard basis whose filtration is
W D HY%C, L) D {0}, then g, kills all elements of nonpositive weight, hence
so does each ¢f. Therefore wg(m) > 0, and (C, E) is Hilbert unstable. Hence
Theorem 1.1 is proved.

6. We continue to suppose that d = 1000g(g — 1). Our object is to prove

Proposition 6.1.  There is an M (depending on d) so that if m = M, and @ is
semistable for C € S, ,, then C is semistable as a curve.

We begin with a few general definitions. Let % be a coherent sheaf on a
scheme, and let W C HY( X, %) be a subspace so that ¥ is generated at each
point by sections in W.

Definition 6.2. A weighted filtration on &

pe (% ST
Ih Ty "

is a sequence of subsheaves

gkggk—l C - .C_G‘;l =&
and rational numbers 7, r, <r,_, < - -+ < r. (Note: In the rest of this paper,
filtrations will increase from left to right.)
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&7
B=|"
12

I

If

is another weighted filtration on &, and if it happens that %, C &/ whenever
r; < r/, we say B’ dominates B.

Let #: Y > X be a map. Given a weighted filtration B = (fj) on 7*(%),
there is an induced filtration B’ = (ff’f‘) on W, where

W, = {s € W|n*(s) € H*(Y, G)}.
Conversely, given a weighted filtration on W, there is an induced filtration on

7*(% ), where §, is the subsheaf of 7*(% ) generated by W.,.
The weight of a filtration () = B on Wis 3 dim(W,/W,_,)r, = w(B).

Now let p: 4 > & be a map of coherent sheaves. The weighted filtration
( kerp & )
0 1

will be denoted
(6.2.1) [F - é].

Now let L be a line bundle on a curve C, and let V C H%C, L) be a very
ample linear system. Let (Zf) = B be a weighted filtration on V. Choose a
compatible weighted basis {( X, p;)} of V, and let wg(m, C) be the minimum
weight of a basis of H%(C, L®™). Then wy(m, C) is a polynomial in m for
m > 0.

Now suppose that C is d curve on G and that ( 1) is a weighted filtration on
W. There is an induced weighted filtration B’ on the image ¥V of A*W in
HY(C,det &.). If V is very ample, we define wg(m, C) = wg(m, C).

For the remainder of this section, we consider a curve C, a very ample linear
system ¥V C H%C, L) and a weighted filtration B = (f{_"). Our aim is to give
two useful estimates for n.l.c. wg(m, C).

Lemma 6.4. Suppose C, C C are subcurves of C, and the natural map
¢: O > @ O, has kernel and cokernel of finite length. Then

n.d.c.wg(m,C) = Yn.lc.wy(m,C).

Proof. Let g be the maximum of the lengths of the kernel and cokernel of
@. Then for m » 0, the kernel and cokernel of

.. H(C, L®™) - @ H(C,, L®")
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have dimension < g. Given a basis P,,- - -, P, of H(C, L®™), we can suitably
reorder the P; and partition Py, --,P,_, into sets Q, C {Py, -+, P,_,} so that
Q, gives an independent set in H°(C,, L®™). Thus

wg(m, C) — mnq = Zwg(m, C) — mrq.

Taking normalized leading coefficients yields the lemma.

Now suppose C is irreducible. Let 7: C - C be the normalization of C,_,
and let  C O be the ideal of C,4. Let / be the length of the local ring of the
generic point of C. Suppose R is an effective divisor on C. Let B = (Z") be a
weighted filtration and let p be an integer and suppose the r, are integers.

Proposition 6.5.  Suppose that V; maps to zero in H %C, L) forj > p and that
V. maps to H(C, L((-r, + r)R)). If deg L = (r, — r,)deg R, then we have

n.d.c.wg(m,C) = (r, — rp)2 deg R + 2Ir,deg L.

Proof. First, replace C by the subscheme defined by §'. Since ' is sup-
ported at a finite number of points, neither the hypothesis nor conclusion of
the theorem are changed.

Let B’ be the weighted filtration

V, -V
b
rp ... r1

that is, we change the weights of the V; for i =p from r; to r,. Now let
{(X,, p;)} be a basis of V" compatible with B. Let M be a monomial in the X,’s
which is nonzero in H%C, L®™). Then M can involve at most / of X;’s with
X, € V,, since §' = 0. Thus

nl.c.wg(m,C) = nlc.wy(m,C),

since the B and B’ weights of a monomial differ by at most /(r, — r,.), where r,
is the lowest weight in B. Hence we may assume B = B'.
Next, notice that

h°(C, L®™) = mldegs L + 0(1),

since $¥~! /¢* is nonzero at the generic point of C4 for k = 1,- - -, /. Consider
a new weighted filtration
|V
B=|," |
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Then
wg(m, C) = wg.(m,C) + mr,h%(C, L®")

= wg(m,C) + m*r,ldeg L + O(m).

Hence it suffices to prove Proposition 6.5 for r, = 0.
Since 7, = 0,
WB(m, C) = WB(m7 Cred)?

so we may assume C is reduced. Now let M be any monomial in ¥*” of
weight Q. Then the image of M is in H%(C, L®™((Q — r;m)R)). Thus there is
a constant C, so that the image of an M of weight Q lies in a subspace of
codimension at least (r,m — Q)deg R — C, in H°(C, L®™). Adding up the
possible contributions for each weight Q, we see any basis must have weight at
least

mry 2
> [@deg R+ O(1)] = rideg RmT + O(m).
0=0
7. Let C € S, ;. We can find curves C; C C and integers /; so that the
following hold:
(7.1.1) Each C, is irreducible.
(7.1.2) 9 =0, where . is the ideal of C; in C.
(7.1.3) 1, is the length of the local ring of the generic point of C,.
(7.1.4) The natural map O — & O, has kernel and cokernel of finite length.
Given a weighted filtration B on W, Lemma 6.4 shows that

n.l.c.wg(m, C) = D nlc.wy(m, C).

Now let E = & ® @, let C, be the normalization of (C,) 4, and let m,: €, - C
be the induced map. Let E, = n*(E) and let d, = deg: E,. Let B be a weighted
filtration on W. If B, is a weighted filtration on E,, we say B dominates B, if
the filtration induced from B on E, dominates B,

Lemma 7.2. Let R be an effective divisor on C,, and let k = deg. E —
2deg R. Suppose B dominates

(E,(—R) Ei)
0 1
Ifk =0, then
(7.2.1) n.l.c.wg(m,C) =4degR,
while if k + deg R = 0 and k < 0, then
(7.2.2) n.l.c.wg(m,C;) = deg R + 21,d,.
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Proof. If k = 0, the filtration induced by Won /A ’E dominates
(NE,-(-zm NE(-R) AE)
0 1 2
Applying Proposition 6.5 gives (7.2.1).
If k + deg R = 0 and k < 0, the filtration induced by W on /\ *E dominates
( AZE(-R) A E)
1 2 )
since H(C, N\ 2Ei(—ZR)) = 0. Applying Proposition 6.5 gives
nlc.wy(m,C)=deg R +2/,d,.
Lemma 7.3. Let E' be a rank-two subsheaf of E,- with deg E’ = 0. Suppose B

dominates
£
0 1/

n.l.c.wg(m,C)=d,— deg E'.

Then

Proof. The filtration induced on A *E, dominates
( NE A in)
0 1
Now AZE’= A?E(-R), where deg R = d, — deg E’. Proposition 6.4 ap-
plies.

Lemma 7.4. Suppose that 0 > M — E, - L - 0 is exact with M and L
invertible and that B dominates

(M(~R> E)
0 1/
Then
n.d.c.wy(m,C)=>deg R+ 2ld,,
ifdeg R<degE,.
Proof. The induced filtration on A *E, dominates
( AE(-R) A E)
1 2 )
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Lemma 7.5. If B dominates

then n.l.c.wg(m, C;) = 41,d,.

Proof. Left to reader.

Now writed/n =1 + €. Sincen = d + 2(1 — g) and n = 1000g(g — 1), we
see ¢ < 1/998g. Let B be a weighted filtration on W. We will say B is

destabilizing if
n.l.c.wy(m,C) > 4(1 + e)w(B).
Throughout the rest of the section, we will assume C € S, , has no destabilizing
flags. Our aim in this section is to establish that /, = 1.
Lemma 7.6. If E, has a trivial quotient E, > O — 0, then [, = 1 and d, = 1.
Proof. We consider the filtration B induced on W by [E; —» O] in the

notation of (6.2.1).
Lemma 7.4 with R = & gives

(7.6.1) nlc.wg(m,C) = 2ld,.

On the other hand, if there is a component q meeting C;, Lemma 7.3 shows
n.l.c.wB(m,C}) = 1.

Hence from (7.6.1),

4(1 + ) > n.lc.wg(m, C) = nlc.wy(m, C) = 214,

Hence /;d; < 2, so C; must meet some C,. Thus

(1 +e)=4ld + 4,
which shows /,d; = 1. The same method of proof shows
Corollary 7.6.2. If C’' C C is a curve, and E_. has a trivial quotient, then C’
has one component, and E. has degree 1.

Lemma7.7. [,=1foralli.
Proof. Suppose /; = 2. Let B be the weighted filtration on W induced by

(o 7]
0 1/
First, suppose B is the trivial filtration, i.e.,

s=(5 ¥
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Then the map from W to H%(E,) is injective. Since 2l,d; = d, we have

d; < 3d. Hence
d+2(1—g)<h%(E)<degE +2<4+2,

i

which is impossible.
The total weight of B is less than or equal to h%(£,) < d, + 2. Hence

(7.7.1) (1 +)(d, +2) > (1 + )h%(E) = 1d, + 3,
where & = 2., wg(m, C;) = 0. We reach a contradiction if /; = 3 or d, > 3. So
we may assume /, = 2 and 4, < 2.

Now deg, A?E <4, so C, must meet another component C.. Suppose
P € ¢;maps to C; N C;. Then the filtration on E; induced by B dominates

( E(-P) Ej) _
0 1
Applying (7.2.1)if d; = 2, and (7.2.2) if d; = 1, we see

4 ifd>2,
)=
nlc.wy(m,C) 3 ifd, =1

Now if d; = 1, then either C; or C, must meet another component C;, and
Lemma 7.3 shows that

n.lc.wy(m,C,) = 1.

In either case, 8 = 4. This contradicts (7.7.1)if /; =2 and d;, = 2. If /, = 2 and
d; = 1, then C,is P', and hence E has a trivial quotient, contradicting Lemma
7.6. Thus /, = 1 in all cases.

8. Our aim in this section is to show that C,_4 has only nodes as singularities.

Let C’' C C4 be a curve.

Lemma 8.1. Ifh°%(C’, E) < deg. E, then deg.(E) = 20g.

Proof. Suppose not. Then some component C; of C must meet C’ as we are
assuming d = 1000g(g — 1). Consider the weighted filtration B given by
[E - E.]. Then

nlc.wy(m, C) = nlc.wyg(m, C’) + nlc.wy(m,C)
=4deg.. (E) + 1,
by (7.5) and (7.3) respectively. But
w(B) = h%(C’, E) = deg (E),
n.l.c.wy(m, C) < 4(1 + &)w(B).
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Combining these gives
4(1 + e)deg. (E) = 4deg (E) + 1,
which is impossible if deg. (E) < 20g.
Lemma 82. Let C' C C,, be a curve and let C" be a component of C'. Then
there is a short exact sequence
O-L—->E.—->M-Q0,

where L and M are invertible, L. and M have nonnegative degree on each
component of C’, and deg . L > 0. '

Proof. Let P,,---,P, be the singular points of C’ and let E’ = E.. Let Z,
be the common zeros of sections of E” which vanish at P,. Then Z, is a finite
set, since if Z; D C, the dimension of the image of H°(E’) in H)(C, E’)
would be at most one. But /A *E is very ample. By picking a point P € C” not
in any Z;, we can find a section s which vanishes at P, but not at any singular
point. We then let L be the smallest subbundle of E containing S to establish
our lemma.

Corollary 8.2.1. Suppose every line bundle L in E ., which has positive total
degree and nonnegative degree on each component of C’, satisfies h°(C’, L) <
dege L. Then deg . E = 20g.

Proof. We write

0-L-E.—M-0.

Since E. is generated by global sections, M has nonnegative degree on each
component of C'. If deg.. (M) =0, E.. has a trivial quotient, so Corollary
7.6.2- shows C’ is smooth and rational, and the hypothesis of Corollary 8.2.1
fails. Hence

hO(C/, L) < degC’ (L)a
RY(C', M) < deg (M).

So
h°(C’, E) < deg.. (E),

and Lemma 8.1 applies.

Lemma 8.3. Let P be a point of C. Then the map m,: C, > C is unramified at
P,

Proof. Suppose not. Let Q = #,(P). Then every section of Oc o vanishing at
Q vanishes at least twice at P. Thus the hypothesis of Corollary 8.2.1 is
satisfied since (C,) g is singular. Hence deg. E = 20.
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Now consider the filtration on W

W, W, W,
B = ( 3 2 1)
0 1 3
induced by

E(-3P) E(-2P) E
0 1 3

Now dim W,/W, <2 as the map from C, to C is ramified at P. Further
dim W,/ W, < 2. Hence w(B) < 8. On the other hand, the induced filtration
on N\ ’E,is

((/\ZE,.)((_s + k)P)
k

Proposition 6.5 shows that n.l.c.wg(m,C) = 36. So 4(1 + )8 = 36, a con-
tradiction,

Lemma 84. C_4 has no triple points.

Proof. Suppose three distinct components, say C,, C,, C;, meet at a point
P. We let B be the weighted filtration on W induced by [E — Ep]. Then
w(B) < 2. Now (7.2.1) and (7.2.2) show that

nl.c.wg(m,C) = 3,

fori = 1,2,3 and n.l.c. wg(m, C;) = 0 for i > 3 and fherefore
nlc.wy(m,C)=9
by (6.4). Hence 4(1 + ¢€)2 > 9, a contradiction.

Now if C; and C, meet at a singular point P € C,, then deg C, = 20. Using
(7.2.1) applied to C, and R = @[ '(P), we see

n.l.c.wg(m, C,) = 8,

and we obtain a contradiction as before.

Similarly, C, cannot have a triple point.

Lemma 8.5. C has no tacnodes.

Proof. Suppose that C; and C, meet at P, and that the tangent lines of C,
and C, are identical. Then the two weighted filtrations induced on W by

B = Ei(_2p) Ei(_P) Ei

0 1 2
for i = 1,2 are identical. Call this filtration B.
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We may assume d| < d,. Now if d; = 1, then C, is rational and E, =0 &
9(1). Thus the map from H%(C,, E(-P)) to E(-P) ® k, is not surjective. So
w(B)<5ifd, = l,and w(B) < 6ifd, > 1.

Now C; U G, satisfies the hypothesis of Lemma 8.1, so d, + d, = 20g = 40,
and hence d, = 4. Applying Proposition 6.5, we see that

nl.c.wy(m, C;) = 16,

if d, = 4. On the other hand, if d, < 4, the filtration induced by W on A ZE,
dominates

A ZE\(_de) e A 2E1(_P) A ZE\
4—d, ces 3 4
since H%(C,, /\ ’E ((-d, — 1)P)) = 0. Applying Proposition 6.5,
nlc.wy(m,C,)=dl+ 24 —d\)d, =d,(8 — d,).

Thus if d|, = 1, then

4(5)(1 + ¢) = nl.c.wy(m,C) =16 + 7 = 23,
a contradiction. If d, = 2, then

4(6)(1 + ¢) = nl.c.wg(m,C) = 16 + 12 = 28,
a contradiction. So C, and C, cross transversally.

Finally, if C, has a tacnode, then d, = 8. A similar argument produces a

contradiction once again.

We have established
Proposition 8.6. C,, has only nodes as singularities.

9. Our main aim in this section is to establish that C is semistable as a curve,
and that the map W - H(C, E) is an isomorphism.

We begin with a version of Clifford’s Theorem following Saint-Donat.

Lemma 9.1. Let D be a reduced curve with only nodes, and let L be a line
bundle on D generated by global sections. If H'(D, L) # 0, there is a curve
C’' C D so that

RO(C’, L) <ideg. L+ 1.

Proof. Since HY(D, L) #0, HY(L' ® w,) # 0. So there is a nonzero
¢: L - wpy We can find a curve C’ C D so that ¢ is not identically zero on
each component of C’, but ¢ vanishes at all points C' N D — C" = {P},- -+, P;}.
Since wo = wp(—P; - - - —P;), we actually obtain

@: Lo = we..
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Choose a basis s,* - -,s, of Hom(L, w.) so that ¢ = s,. We can choose a
basis ¢, ---1,0f H (L) so that ¢, does not vanish at the zeros of s, nor at any
singular point of C’. Suppose

a sty tay(st)t o =by (s 1)+ bs(sy, 1)+ -,
where the pairing (s, ) is into H(C’, ws). Then (s, t)= (s, 1), where
t € HYC, L), and s is a linear combination of s,,- - -,s,. Since ¢ vanishes

where ¢, does, ¢ is a multiple of ¢,. Hence s is a multiple of s, contradicting the
independence of the s;’s. So

RO(Le) + hwe ® LY ) < g+ 1,
B%(Le) — h%(we ® Ld) < deg (L) + 1 —g.

Adding the above two inequalities thus gives the desired result.
Lemma 9.2. Let C’ be a proper subcurve of C..4. Then

h%(C’, E) > deg (E) + 2(1 — g).

Proof. Suppose not. Let d” = deg. (E). Consider the filtration B induced
on Woby[E - E.]. SincedmW=d+ 2 —g)>d +2(1 —g)=w(B), B
1s a nontrivial filtration, Further,

nl.c.wy(m,C) = nlc.wy(m,C’) = 4d’,

from Lemma 7.5. Thus

d

1
% (g +201 - =-nlc. ,C)=d".

This contradicts d’ < d.
Lemma 9.3. H'C,., \°E)=0.
Proof. Suppose not. Lemma 9.1 shows there is a curve C' C C,

ed With

h(C’, N?E) <}deg E+ 1.

Thus C’ is not rational, and therefore Lemma 8.1 shows deg. (E) = 20g. On
the other hand, E is generated by global sections, so we can find a nowhere
vanishing section of E over C”:

(9.3.1) 0-0. - Ec>(N%E). 0.
Hence

deg. (E)

0
h°(C,E) < 5

+2<deg~(E) +2— 10g.
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In particular,
h*(C’, E) <degc (E) + 21 — g),
which contradicts Lemma 9.2.

Lemma94. H'(C.4, E) = 0.

Proof. Suppose not. Then there is a nonzero map ¢ : E - wc_,. Using the
techniques of the proof of Lemma 9.1, we can find a curve C’ of C,, of genus
g’ and a map ¢: E — w. which is nonzero on each component of C’. Note
g’ = 2, since otherwise E would have a trivial quotient. Then from (9.3.1),

R(C E)<h(C',\N’E)+ 1 <degc (E)+1—g' + 1,
since HY(C’, N\ 2E) = 0. We see deg.(E) = 20g from Lemma 8.1. Further
g’ < 2g, since otherwise
h*(C’, E) < degc. (E) +2(1 — g),

contradicting Lemma 9.2.
Now consider the filtration induced on W by [E — w..]. We have h°(C’, w.)
=g’,s02r, < g’. We also have

nl.c.wg(m,C) = 2deg. (E),
from Lemma 7.4. So
4(2g) = 4g’ =4 r, = 2deg. (E) = 40g.
Hence we reach a contradiction.
Corollary 9.5. C is reduced and W = H%(C, E).

Proof. Consider 9, the ideal defining C,4 in C. § is supported at a finite
number of points. We claim

(9.5.1) wnNHYC,$-E)+#0.
Let g’ be the genus of C,4, and / be the length of 9. Then g’ = g + /. Thus if
[ >0, then :
HYC,y,E)<degE+2(1 —g)=dimW,

since H'(C,.q, E) = 0. S0 (9.5.1) is established.
Now consider the filtration B induced on W by
( E-§ E)
0 1/

Then Zr, < dim W, but n.l.c. wg(m, C) = 4d. We have again reached a con-
tradiction.



HILBERT STABILITY 27

Proposition 9.6. C is semistable. _
Proof. Suppose C = C’ U C”, where C' N C” is a point P, and C” is a
chain of rational curves. The genus of C’ is g, so

RY(C’, E) = deg (E) + 2(1 — g).
We have contradicted Lemma 9.2. So C is semistable.

10. Our purpose in this section is to establish some properties of E.
Proposition 10.1.  Let L be a quotient of E. Then 2deg L > deg . E
Proof. Let M = ker(E — L). Consider the filtration B:

(v 1)
0 1)
It is easy to see B is destabilizing if 2deg L < deg E.

Now suppose C’ C C is a chain of rational curves C, U - - - U C,, where the
C,; are nonsingular rational, and C; meets only C,_, and C,,. We further
suppose that C”” = C — C’ is connected, and that C” meets C, at one point P
and C, at one point Q, and meets no other C,.

Lemma 10.2. deg..(F) <2.

Proof. Suppose not. The genus of C” is g — 1. Consider the filtration B
induced on W by [E - E_.]. First, notice that since 3 < d’ = deg E, and E

is generated by global sections over C’, H%(C’, E ) > 4. Hence the filtration B
is nontrivial. We claim that

(10.2.1) n.lc.wy(m,C’) > 8

Suppose (10.2.1) has been established. Let d” = d — d’. Then h%(C”, E) =
d” + 2(2 — g), since C” has genus g — 1. So '

d 1 17
m[d +2(2 g)]?d + 2.
After a short computation, we obtain d” << 2.

To establish (10.2.1), consider case one: /= 1. If we let R =P + Q, and
apply (7.2.1) if d’ = 4 and (7.2.2) if d’ = 3, then we obtain (10.2.1). Next,
consider case two: d’ = 3..We claim that H%(C’, /\ 2E( 2P —20)) =0. Let
s be such a nonzero section. We must have deg, N*E=1or deg, NE =1,
since d’ = 3. Say deg, /A2E = 1. Then s vanishes on C,, and therefore on
C, N G,. If /=2, s vanishes twice at Q¢ and once at C; N C,, and so s
vanishes. If / = 3, then degcj(/\ ’E ) = 1. So s vanishes on C; also. But then s
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vanishes on C, zs well, since deg . E = 1. Hence H(C’, A’E(—2P — 2Q)) =
0. So the filtration induced by B on /\ *E_., is dominated by
(E(-P —Q) E
1 2)
Applying Lemma 7.2, (10.2.1) holds, and d” < 2.

By applying cases one and two to subchains of C, we may assume that E
does not have degree 3 on any subchain, and that deg. E <2 for each /. It
follows that the degree of E’ on each C, is two. But applying Lemma 7.2, we
see

we(m,C\) =4, wy(m,C) =4
Then using Lemma 6.4, (10.2.1) holds, and d’ < 2

Now suppose the stable model C, of C is an irreducible curve with a node N.
Let C, be the normalization of C,, and d’ = deg E,.

Lemma 103. Assume d to be odd. Let L be a quotient of E,. Then
2degL=d—1ifd=d’, andEO is semistable if d * d’.

Proof. Suppose for some 6 = 0

(10.3.1) 2degL<d—2—8.
Then
(10.3.2) R(L)<id+1—g+1s.

Indeed, if A'(L) = 0, (10.3.2) follows from Riemann-Roch. If 4!(L) = 0, then
"% L) < g— 1. Butd’ = 20g (Lemma 8.1). So (10.3.2) follows in any case.
Now consider the weighted filtration B on W induced by [E — L]. First,

suppose C = C,, and let P, O € C, be the points corresponding to N. Now E,
and EQ are 1dent1fled with Ey. Under this identification, L, # L, as quotients.
Indeed, if L, = L, then L descends to a line bundle on C. ThlS possibility is
ruled out by Proposmon 10.1. Thus if M = ker(EO — L), then B is dominated
by the filtration induced by

B/:(M(_P—Q) EO)

0 1

From Lemma 7.4 we see

n.l.c.wg(m, C,) =2d + 2.

Combining these inequalities with n.l.c. wg(m, C) < 4dw(B)/n, we obtain

(1033) m(a;—_—g—) ( d +1-—- g) (2d + 2)

A short computation shows (10.3.3) is impossible.
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Next suppose that d # 4’ and that EO is not semistable. Since d — d’ < 2
and d is odd, we may assume there is an L satisfying (10.3.1) with § = 1. Now
letting C* = C — C,, we see

nlc.wy(m,C’) =2, nlc.wy(m,C)=2d".
As above, this leads to
d ( d 1
d+2(1—g)\2 £72
A short computation shows (10.3.4) cannot occur.
Thus we have established (1.3.1), (1.3.3) and (1.3.4).

(10.3.4) ) 2%(2(1' +2).
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